• JUPYTER
  • FAQ
  • View as Code
  • Python 3 Kernel
  • View on GitHub
  • Execute on Binder
  • Download Notebook
  1. interactive-coding-challenges
  2. recursion_dynamic
  3. knapsack_01

This notebook was prepared by Donne Martin. Source and license info is on GitHub.

Challenge Notebook¶

Problem: Given a knapsack with a total weight capacity and a list of items with weight w(i) and value v(i), determine which items to select to maximize total value.¶

  • Constraints
  • Test Cases
  • Algorithm
  • Code
  • Unit Test
  • Solution Notebook

Constraints¶

  • Can we replace the items once they are placed in the knapsack?
    • No, this is the 0/1 knapsack problem
  • Can we split an item?
    • No
  • Can we get an input item with weight of 0 or value of 0?
    • No
  • Can we assume the inputs are valid?
    • No
  • Are the inputs in sorted order by val/weight?
    • Yes, if not we'd need to sort them first
  • Can we assume this fits memory?
    • Yes

Test Cases¶

  • items or total weight is None -> Exception
  • items or total weight is 0 -> 0
  • General case
total_weight = 8
items
  v | w
  0 | 0
a 2 | 2
b 4 | 2
c 6 | 4
d 9 | 5

max value = 13
items
  v | w
b 4 | 2
d 9 | 5 

Algorithm¶

Refer to the Solution Notebook. If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start.

Code¶

In [ ]:
class Item(object):

    def __init__(self, label, value, weight):
        self.label = label
        self.value = value
        self.weight = weight

    def __repr__(self):
        return self.label + ' v:' + str(self.value) + ' w:' + str(self.weight)
In [ ]:
class Knapsack(object):

    def fill_knapsack(self, input_items, total_weight):
        # TODO: Implement me
        pass

Unit Test¶

The following unit test is expected to fail until you solve the challenge.

In [ ]:
# %load test_knapsack.py
import unittest


class TestKnapsack(unittest.TestCase):

    def test_knapsack_bottom_up(self):
        knapsack = Knapsack()
        self.assertRaises(TypeError, knapsack.fill_knapsack, None, None)
        self.assertEqual(knapsack.fill_knapsack(0, 0), 0)
        items = []
        items.append(Item(label='a', value=2, weight=2))
        items.append(Item(label='b', value=4, weight=2))
        items.append(Item(label='c', value=6, weight=4))
        items.append(Item(label='d', value=9, weight=5))
        total_weight = 8
        expected_value = 13
        results = knapsack.fill_knapsack(items, total_weight)
        self.assertEqual(results[0].label, 'd')
        self.assertEqual(results[1].label, 'b')
        total_value = 0
        for item in results:
            total_value += item.value
        self.assertEqual(total_value, expected_value)
        print('Success: test_knapsack_bottom_up')

    def test_knapsack_top_down(self):
        knapsack = KnapsackTopDown()
        self.assertRaises(TypeError, knapsack.fill_knapsack, None, None)
        self.assertEqual(knapsack.fill_knapsack(0, 0), 0)
        items = []
        items.append(Item(label='a', value=2, weight=2))
        items.append(Item(label='b', value=4, weight=2))
        items.append(Item(label='c', value=6, weight=4))
        items.append(Item(label='d', value=9, weight=5))
        total_weight = 8
        expected_value = 13
        self.assertEqual(knapsack.fill_knapsack(items, total_weight), expected_value)
        print('Success: test_knapsack_top_down')

def main():
    test = TestKnapsack()
    test.test_knapsack_bottom_up()
    test.test_knapsack_top_down()


if __name__ == '__main__':
    main()

Solution Notebook¶

Review the Solution Notebook for a discussion on algorithms and code solutions.

This website does not host notebooks, it only renders notebooks available on other websites.

Delivered by Fastly, Rendered by OVHcloud

nbviewer GitHub repository.

nbviewer version: 8b013f7

nbconvert version: 7.2.3

Rendered (Wed, 02 Jul 2025 19:07:32 UTC)