人工智能插班生
码龄10年
求更新 关注
提问 私信
  • 博客:147,468
    社区:458
    147,926
    总访问量
  • 75
    原创
  • 867
    粉丝
  • 20
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:甘肃省
加入CSDN时间: 2016-04-09

个人简介:双一流大学人工智能方向博士,Google GDE。已经发表SCI论文多篇,CSDN专栏文章、知乎文章近百篇(机器学习专栏、深度学习专栏、强化学习专栏、自然语言处理NLP专栏)

博客简介:

Doctor Wu的博客

博客描述:
AI,我们一路走来
查看详细资料
个人成就
  • 获得127次点赞
  • 内容获得27次评论
  • 获得448次收藏
  • 博客总排名1,431,871名
创作历程
  • 4篇
    2023年
  • 72篇
    2018年
成就勋章
TA的专栏
  • 漫画人工智能
  • 从IT思维到AI思维
  • 机器学习
    19篇
  • 会议
  • 深度学习
    25篇
  • 对抗网络
    9篇
  • 强化学习
    18篇
  • 机器学习
    22篇
  • 决策树
  • 集成学习
  • PCA
    1篇
  • Neighbor Embedding
    1篇
  • VAE
    1篇
  • 模型评估
  • 深度学习
    53篇
  • 神经网络
    51篇
  • AI竞赛
    1篇
  • 强化学习
    18篇
  • GAN
    9篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    深度学习神经网络自然语言处理tensorflow
创作活动更多

AgenticCoding·十二月创作之星挑战赛

随着寒风渐起,十二月悄然来临,猫头虎诚挚邀请您加入一场别开生面的创意与技术挑战!本次博客挑战赛聚焦AI编程、AgenticCoding、开源实践等前沿主题,激发您在编程与AI领域的无限创作潜能。 无论您是AI的初学者,还是技术界的资深创作者,这里都是您展示才华、碰撞灵感的最佳舞台。您可以: 1.深入解析AI与编程领域的最新技术动态,引领行业发展趋势 2.分享AI技术在实际工作的项目中的创新应用与解决方案 3.揭示您在开源社区中的宝贵经验与独到见解 **活动须知:** 1.参赛者可加入专属活动围观交流群,和其他创作者互动交流,分享心得,互相激励与支持。答疑与围观群请点击右侧群链接:[https://bbs.csdn.net/topics/619770678](https://bbs.csdn.net/topics/619770678) 2.文章质量评分查询入口:[点击查看评分入口](https://www.csdn.net/qc) **我们诚挚邀请您参加「AgenticCoding·十二月创作之星挑战赛」!** 在这个寒冷的十二月,让我们携手借助AI的力量,点亮创作之星的光辉之路,开启属于您的创作之旅!

42人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

自然语言处理

自然语言处理
原创
博文更新于 2023.03.08 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微软人工智能应用介绍

微软人工智能应用介绍
原创
博文更新于 2023.03.06 ·
297 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络基础与计算机视觉初步

神经网络基础与计算机视觉初步
原创
博文更新于 2023.02.27 ·
210 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

图机器学习及其应用

图机器学习及其应用
原创
博文更新于 2023.02.23 ·
201 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习与深度学习系列连载(NTU-Machine Learning, cs229, cs231n, cs224n, cs294):欢迎进入机器学习的世界

欢迎使用Markdown编辑器写博客强调内容本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加粗 Ctrl + B 斜体 Ctrl...
原创
博文更新于 2021.04.21 ·
14795 阅读 ·
40 点赞 ·
4 评论 ·
154 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(十八)模型评估

模型评估模型评估中有三个关键问题: 如何获得测试结果? 评估方法 如何评估性能优劣? 性能度量 如何判断实质差别? 比较检验1. 模型评估方法,请参考机器学习第四节[误差分析](https://blog.csdn.net/dukuku5038/article/details/82682855)2. 性能度量(performance measure)是衡量模型泛化能力的...
原创
博文更新于 2019.01.14 ·
714 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(十七)非监督度学习-4 Unsupervised Learning-4(Generative Models)

生成模型 Generative Models用非监督学习生成结构化数据,是非监督模型的一个重要分支,本节重点介绍三个算法: Pixel RNN ,VAE 和GAN(以后会重点讲解原理)1. Pixel RNNRNN目前还没有介绍,,以后会重点讲解,大家目前认为他是一个神经网络即可举例:用Pixel RNN 生成怪物精灵;我们首先进行配色编码:然后遮盖部门图片,进行图片生成2....
原创
博文更新于 2019.01.14 ·
580 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(十六)非监督度学习-3 Unsupervised Learning-3(Auto-Encoder)

Auto-EncoderAuto-Encoder 原理很简单,但是应用范围很广,本节重点讨论它的应用。我们从PCA开始:当然中间的影藏层可以很深:我们的图像效果:当然,Auto-Encoder 并不是图像处理的专利,而且也可以处理文本。在图形处理CNN中的应用(CNN以后会重点讲解)...
原创
博文更新于 2019.01.14 ·
425 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(十五)非监督度学习-2 Unsupervised Learning-2(Neighbor Embedding)

临近编码 Neighbor Embedding在非监督学习降维算法中,高纬度的数据,在他附近的数据我们可以看做是低纬度的,例如地球是三维度的,但是地图可以是二维的。那我们就开始上算法1. Locally Linear Embedding (LLE)我们需要找到wijw_{ij}wij​ 来最小化:找到wijw_{ij}wij​后,我们固定它,然后在z中进行判断实验:2. L...
原创
博文更新于 2019.01.14 ·
472 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(十三)半监督学习(semi-supervised learning)

1
原创
博文更新于 2019.01.11 ·
2085 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(十二)集成学习(Ensemble)

集成学习(Ensemble)1. Bagging我们考虑当结果的 variance 很大,如果降低 variance。我们可以考虑“平行宇宙”,不同的training set 中生成不同的模型,然后做平均或者voting。2. Decision Tree(Review)我们复习上一节的决策树的概念。来一个有意思的实验,分辨出漫画人物当单棵决策树的深度为20的时候,得到的结果已经...
原创
博文更新于 2019.01.10 ·
1764 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(十一)决策树2(Decision Tree)

决策树2决策树很容易出现过拟合问题,针对过拟合问题,我们采用以下几种方法划分选择 vs 剪枝剪枝 (pruning) 是决策树对付“过拟合”的 主要手段!基本策略:预剪枝 (pre-pruning): 提前终止某些分支的生长后剪枝 (post-pruning): 生成一棵完全树,再“回头”剪枝剪枝过程中需评估剪枝前后决策树的优劣我们还是以西瓜书的例子:我们通过训练集得到未剪...
原创
博文更新于 2019.01.10 ·
1026 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(十)决策树1(Decision Tree)

决策树(Decision Tree)
原创
博文更新于 2019.01.09 ·
741 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(九)支持向量机2(Support Vector Machine)

另一种视角定义SVM:hinge Loss +kennel trickSVM 可以理解为就是hingle Loss和kernel 的组合1. hinge Loss还是让我们回到二分类的问题,为了方便起见,我们y=1 看做是一类,y=-1 看做是另一类他的Loss 函数是分类错误的次数,很显然,这是个离散的值,不可微分,我们需要找到一个等价的Loss于是我们出各种等价Loss 函数的...
原创
博文更新于 2019.01.09 ·
582 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(八)支持向量机1(Support Vector Machine)

SVM我们定义SVM为hinge Loss +kennel trik 为SVM 首先我们看看 hinge Loss 1. hinge Loss还是让我们回到二分类的问题,为了方便起见,我们y=1 看做是一类,y=-1 看做是另一类 他的Loss 函数是分类错误的次数,很显然,这是个离散的值,不可微分,我们需要找到一个等价的Loss 于是我们出各种等价Loss 函数...
原创
博文更新于 2019.01.07 ·
1304 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(七)朴素贝叶斯(Naive Bayes)

朴素贝叶斯我们先来看贝叶斯公式: 这个和咱们上一讲生成概率模型的公式是不是很相似,朴素贝叶斯其实就是概率生成模型的一个特例,概率生成模型是假设x 是服从某种特定的概率分布的。x中的各个维度有有相互关系的。 但是朴素贝叶斯为什么朴素,就是假设x是独立分布的。 以邮件分类应用为例,当邮件中出现单词‘buy’,‘price’很可能是广告邮件,我们可能把他分类为垃圾邮件。那么我们得到: ...
原创
博文更新于 2019.01.07 ·
1104 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习与深度学习系列连载: 第一部分 机器学习(六)训练数据和测试数据(Train data and Test data)

训练数据和测试数据我们现在已经对机器学习三板斧已经有了比较深入的了解,其实机器学习的过程就是找到一个数学模型(函数),来进行问题求解。但是如何从找到的函数集合中挑选最好的,很多同学已经可以脱口而出了:那就是找到让Loss函数最小的函数最小就可以了。 但是,这个让Loss函数最小的结果从哪里得出?,这就带出来训练数据集合测试数据集的概念了。 直觉上,我们的模型在训练数据集表现的好,在测试数据集上...
原创
博文更新于 2019.01.07 ·
8393 阅读 ·
3 点赞 ·
1 评论 ·
18 收藏
加载更多