Lies.
码龄6年
求更新 关注
提问 私信
  • 博客:56,240
    56,240
    总访问量
  • 25
    原创
  • 32
    粉丝
  • 35
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2020-03-14

个人简介:22岁,科研民工。

  • 毕业院校: 中国科学院大学
博客简介:

weixin_46564151的博客

查看详细资料
个人成就
  • 获得97次点赞
  • 内容获得22次评论
  • 获得250次收藏
  • 代码片获得1,582次分享
  • 博客总排名511,349名
创作历程
  • 20篇
    2023年
  • 5篇
    2022年
成就勋章
TA的专栏
  • PaddlePaddle从入门到入土
    3篇
  • 网络结构
    1篇
  • 视频实例分割
    3篇
  • 深度学习
    5篇
  • 机器学习
    9篇
  • 6D位姿估计/追踪
    4篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 1

兴趣领域 设置
  • Python
    python
  • 人工智能
    计算机视觉深度学习pytorch图像处理
创作活动更多

AgenticCoding·十二月创作之星挑战赛

随着寒风渐起,十二月悄然来临,猫头虎诚挚邀请您加入一场别开生面的创意与技术挑战!本次博客挑战赛聚焦AI编程、AgenticCoding、开源实践等前沿主题,激发您在编程与AI领域的无限创作潜能。 无论您是AI的初学者,还是技术界的资深创作者,这里都是您展示才华、碰撞灵感的最佳舞台。您可以: 1.深入解析AI与编程领域的最新技术动态,引领行业发展趋势 2.分享AI技术在实际工作的项目中的创新应用与解决方案 3.揭示您在开源社区中的宝贵经验与独到见解 **活动须知:** 1.参赛者可加入专属活动围观交流群,和其他创作者互动交流,分享心得,互相激励与支持。答疑与围观群请点击右侧群链接:[https://bbs.csdn.net/topics/619770678](https://bbs.csdn.net/topics/619770678) 2.文章质量评分查询入口:[点击查看评分入口](https://www.csdn.net/qc) **我们诚挚邀请您参加「AgenticCoding·十二月创作之星挑战赛」!** 在这个寒冷的十二月,让我们携手借助AI的力量,点亮创作之星的光辉之路,开启属于您的创作之旅!

42人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【PaddlePaddle】数学运算和逻辑运算

很久没有更新paddle系列了,十月实在有些忙(写各种本子、做各种作业、忙一些投稿),十一月忙完之后会稳步更新。
原创
博文更新于 2023.10.29 ·
496 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

【PaddlePaddle】创建Tensor的两种方式:指定数据和指定形状

paddlepaddle中Tensor的两种创建方式,包含15个函数及其参数详解。
原创
博文更新于 2023.09.19 ·
1759 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

【PaddlePaddle】保姆级教程:Ubuntu22.04+CUDA12.2编译PaddlePaddle源码并安装

WSL2 Ubuntu 22.04+CUDA12.2,从0开始编译并安装paddlepaddle
原创
博文更新于 2023.09.18 ·
5850 阅读 ·
9 点赞 ·
1 评论 ·
23 收藏

【论文阅读】Dilated Residual Networks(全文翻译)

卷积网络会逐步减小分辨率直到图像被表示成一个很小的特征图,而这个特征图中,场景的空间结构已经不再能够辨认了。这样的空间敏锐度的损失限制了图像分类的精确度,同时也复杂化了模型在那些要求细节场景理解的下游应用中的迁移使用。这些问题都可以被扩张所解决,它提高了输出特征图的分辨率,同时也不降低单个神经元的感受野。
原创
博文更新于 2023.04.18 ·
659 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

【论文阅读】SwiftNet: Real-time Video Object Segmentation

CVPR2021 SwiftNet 论文详解
原创
博文更新于 2023.04.12 ·
1588 阅读 ·
0 点赞 ·
2 评论 ·
4 收藏

【深度学习】损失函数(1):Cross-Entropy Loss 交叉熵损失(代价函数和损失函数的区别+交叉熵与KL散度、信息熵/熵之间的关系)

优化我们的神经网络,使计算出的交叉熵最小,这就是交叉熵损失的基本思想
原创
博文更新于 2023.03.23 ·
1072 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

【深度学习】网络训练原理:前向传播+反向传播

有了反向传播后,每有一个样本经过网络,就可以对网络的参数进行一次更新,而不需将所有样本都经过网络后再更新了
原创
博文更新于 2023.03.18 ·
1728 阅读 ·
8 点赞 ·
0 评论 ·
11 收藏

【深度学习】 梯度下降算法及其改进:BGD\SGD\MBGD+MomentumGD\AdaGrad\RMSProp\Adam

梯度下降算法详解
原创
博文更新于 2023.03.16 ·
409 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【深度学习】激活函数:原理+常见激活函数(Sigmoid\Tanh\ReLU\Leaky ReLU\Softmax)

线性模型的表达能力不够。引入非线性激活函数,可使深层神经网络的表达能力更加强大。
原创
博文更新于 2023.03.15 ·
1070 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

【深度学习】网络训练的原理:什么是梯度下降?学习率的作用是什么?

既然梯度方向是函数值增加的方向,那么自变量沿着这个方向���下去,函数值就会越来越大。反之,梯度的反方向就是函数值减小的方向,沿着梯度的反方向走下去,函数值就会越来越小
原创
博文更新于 2023.03.14 ·
772 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

【机器学习】集成学习方法:Bagging(随机森林)+Boosting(AdaBoost)

一般的机器学习算法都是“单打独斗”,影响其性能(尤其是泛化性)的因素有很多,比如训练集中样本过少、样本分布不均匀等;除此以外,不同的机器学习方法也针对了不同类型的数据,但由于真实数据是未知的,它不一定也遵从训练集的数据分布,因此单兵作战的战斗力十分有限。集成学习是一种学习方法,而并非是具体的方法或者算法,思想是是将这些“单兵作战”的英雄组成团队,实现“3 个臭皮匠顶个诸葛亮”的效果。
原创
博文更新于 2023.03.12 ·
2832 阅读 ·
6 点赞 ·
0 评论 ·
20 收藏

【机器学习】决策树概念+ID3\C4.5\CART+剪枝+特殊值处理

决策树是一个算法,是一个预测算法,以树形数据结构来展示决策规则和分类结果,可以用于分类和回归,其重点是将看似无序、杂乱的已知数据通过某种技术手段将它们转化成可以预测未知数据的树状模型。每一条从到的路径都代表一条决策的规则。决策树是一树状结构,它的每一个叶节点对应着一个分类,非叶节点对应着在某个属性上的划分,构造决策树的核心问题是在每一步(也就是说,该如何确定下一条路应该走到左孩子还是右孩子)。
原创
博文更新于 2023.03.09 ·
468 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【机器学习】二分类+多分类LDA线性判别分析降维算法的原理与推导

二分类+多分类LDA线性判别分析降维算法的原理与推导
原创
博文更新于 2023.03.06 ·
4454 阅读 ·
13 点赞 ·
2 评论 ·
39 收藏

【机器学习】超参数的选择——网格搜索与交叉验证

GridSearchCV,LOO-CV,K-CV等交叉验证基础知识
原创
博文更新于 2023.03.05 ·
961 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【机器学习】L1与L2正则化原理及其适用场景

L1与L2正则化原理及其适用场景
原创
博文更新于 2023.03.05 ·
1249 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

【机器学习】PCA主成分分析降维算法

PCA的推导
原创
博文更新于 2023.03.05 ·
430 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【机器学习】KNN算法及K值的选取

KNN算法及K值的选取
原创
博文更新于 2023.03.05 ·
9865 阅读 ·
5 点赞 ·
2 评论 ·
50 收藏

【机器学习】 线性回归和最小二乘法

线性回归目标函数的推导
原创
博文更新于 2023.03.05 ·
300 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【机器学习】机器学习、深度学习、强化学习之间的关系

机器学习中一些概念的区分和理解
原创
博文更新于 2023.03.05 ·
2220 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

【论文阅读】FEELVOS: Fast End-to-End Embedding Learning for Video Object Segmentation

论文来自CVPR 2019
原创
博文更新于 2023.02.24 ·
324 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏
加载更多