Published online by Cambridge University Press: 09 March 2007
In small-scale experiments, the predatory mites, Hypoaspis aculeifer (Canestrini) and H. miles Berlese, applied at 700 mites m−2, and the entomopathogenic nematode, Steinernema feltiae (Filipjev) applied at 3 × 10−6 nematodes m−2 controlled sciarids and phorids in mushroom compost and casing substrates. For both mite species, earliest application to the growing substrate following sciarid infestation reduced sciarid emergence. In contrast, later application of each biological control agent provided more effective control of phorid emergence. The behaviour of adult mites suggested that H. aculeifer were more positively geotactic than H. miles although both species could penetrate compost and casing substrates to a depth of 2–12 cm. A majority of S. feltiae nematodes resided at a depth of 2–4 cm in both substrate types. Independent application of H. aculeifer provided more comprehensive control of sciarids and phorids than the other biological agents studied, owing to its better dispersal within compost and casing, and ability to attack larvae of differing ages.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.