Skip to content

Commit 4360352

Browse files
author
Giuseppe Attardi
committed
Fix to input_size.
1 parent 575ce7a commit 4360352

File tree

7 files changed

+1175
-1031
lines changed

7 files changed

+1175
-1031
lines changed

‎bin/dl-ner.py‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ def create_trainer(args, converter, tag_index):
4949
else:
5050
logger.info('Creating new network...')
5151
# sum the number of features in all tables
52-
input_size = converter.size() * args.window * 2 + 1
52+
input_size = converter.size() * (args.window * 2 + 1)
5353
nn = SequenceNetwork(input_size, args.hidden, len(tag_index))
5454
options = {
5555
'learning_rate': args.learning_rate,

‎bin/dl-pos.py‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ def create_trainer(args, converter, tag_index):
4848
else:
4949
logger.info('Creating new network...')
5050
# sum the number of features in all tables
51-
input_size = converter.size() * args.window * 2 + 1
51+
input_size = converter.size() * (args.window * 2 + 1)
5252
nn = SequenceNetwork(input_size, args.hidden, len(tag_index))
5353
options = {
5454
'learning_rate': args.learning_rate,

‎bin/dl-sentiwords.py‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ def create_trainer(args, converter):
4747
else:
4848
logger.info('Creating new network...')
4949
# sum the number of features in all extractors' tables
50-
input_size = converter.size() * args.window * 2 + 1
50+
input_size = converter.size() * (args.window * 2 + 1)
5151
nn = Network(input_size, args.hidden, 2)
5252
options = {
5353
'learning_rate': args.learning_rate,

‎bin/dl-words.py‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ def create_trainer(args, converter):
4646
else:
4747
logger.info('Creating new network...')
4848
# sum the number of features in all extractors' tables
49-
input_size = converter.size() * args.windows * 2 + 1
49+
input_size = converter.size() * (args.windows * 2 + 1)
5050
nn = LmNetwork(input_size, args.hidden, 1)
5151
options = {
5252
'learning_rate': args.learning_rate,

‎deepnl/networkseq.cpp‎

Lines changed: 1161 additions & 1021 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

‎deepnl/networkseq.pyx‎

Lines changed: 9 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,10 @@ cdef class SeqParameters(Parameters):
3232
super(SeqParameters, self).__init__(input_size, hidden_size, output_size)
3333
self.transitions = np.zeros((output_size + 1, output_size))
3434

35+
def clear(self, val=0.0):
36+
super(SeqParameters, self).clear(val)
37+
self.transitions[:,:] = val
38+
3539
def initialize(self, int input_size, int hidden_size, int output_size):
3640
super(SeqParameters, self).initialize(input_size, hidden_size, output_size)
3741
# A_i_j score for jumping from tag i to j
@@ -46,18 +50,18 @@ cdef class SeqParameters(Parameters):
4650
self.transitions += grads.transitions * grads.transitions
4751

4852
cpdef update(self, Gradients grads, float_t learning_rate,
49-
Parameters ada=None, float_t adaEps=1e-6):
53+
Parameters ada=None):
5054
"""
5155
Adjust the weights.
5256
:param ada: cumulative square gradients for performing AdaGrad.
5357
"""
54-
super(SeqParameters, self).update(grads, learning_rate, ada, adaEps)
58+
super(SeqParameters, self).update(grads, learning_rate, ada)
5559

5660
# Adjusts the transition scores table with the calculated gradients.
5761
if ada:
5862
# this is done in super.update(), which calls back addSquare().
5963
#ada.transitions += grads.transitions * grads.transitions
60-
self.transitions += learning_rate * (<SeqGradients>grads).transitions / np.sqrt((<SeqParameters>ada).transitions + adaEps)
64+
self.transitions += learning_rate * (<SeqGradients>grads).transitions / np.sqrt((<SeqParameters>ada).transitions)
6165
else:
6266
self.transitions += (<SeqGradients>grads).transitions * learning_rate
6367

@@ -129,8 +133,8 @@ cdef class SequenceNetwork(Network):
129133
self.output_size, seqlen)
130134

131135
cdef parameters(self):
132-
return SeqParameters(self.input_size, self.hidden_size,
133-
self.output_size)
136+
return SeqParameters(self.input_size, self.hidden_size,
137+
self.output_size)
134138

135139
cdef np.ndarray[float_t,ndim=2] _calculate_delta(self, scores):
136140
"""

‎setup.py‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ def readme():
4444
url = "https://github.com/attardi/deepnl",
4545

4646
license = "GNU GPL",
47-
version = "1.3.14",
47+
version = "1.3.15",
4848

4949
platforms = "any",
5050

0 commit comments

Comments
 (0)