1818# Configure working directory
1919WORKING_DIR = os .environ .get ("RAG_DIR" , f"{ DEFAULT_RAG_DIR } " )
2020print (f"WORKING_DIR: { WORKING_DIR } " )
21+ LLM_MODEL = os .environ .get ("LLM_MODEL" , "gpt-4o-mini" )
22+ print (f"LLM_MODEL: { LLM_MODEL } " )
23+ EMBEDDING_MODEL = os .environ .get ("EMBEDDING_MODEL" , "text-embedding-3-large" )
24+ print (f"EMBEDDING_MODEL: { EMBEDDING_MODEL } " )
25+ EMBEDDING_MAX_TOKEN_SIZE = int (os .environ .get ("EMBEDDING_MAX_TOKEN_SIZE" , 8192 ))
26+ print (f"EMBEDDING_MAX_TOKEN_SIZE: { EMBEDDING_MAX_TOKEN_SIZE } " )
27+
2128if not os .path .exists (WORKING_DIR ):
2229 os .mkdir (WORKING_DIR )
2330
@@ -29,7 +36,7 @@ async def llm_model_func(
2936 prompt , system_prompt = None , history_messages = [], ** kwargs
3037) -> str :
3138 return await openai_complete_if_cache (
32- os . environ . get ( " LLM_MODEL" , "gpt-4o-mini" ) ,
39+ LLM_MODEL ,
3340 prompt ,
3441 system_prompt = system_prompt ,
3542 history_messages = history_messages ,
@@ -43,7 +50,7 @@ async def llm_model_func(
4350async def embedding_func (texts : list [str ]) -> np .ndarray :
4451 return await openai_embedding (
4552 texts ,
46- model = os . environ . get ( " EMBEDDING_MODEL" , "text-embedding-3-large" ) ,
53+ model = EMBEDDING_MODEL ,
4754 )
4855
4956
@@ -60,7 +67,7 @@ async def get_embedding_dim():
6067 working_dir = WORKING_DIR ,
6168 llm_model_func = llm_model_func ,
6269 embedding_func = EmbeddingFunc (embedding_dim = asyncio .run (get_embedding_dim ()),
63- max_token_size = os . environ . get ( " EMBEDDING_MAX_TOKEN_SIZE" , 8192 ) ,
70+ max_token_size = EMBEDDING_MAX_TOKEN_SIZE ,
6471 func = embedding_func ),
6572)
6673
0 commit comments