Skip to content

Commit f576a28

Browse files
committed
Create lightrag_azure_openai_demo.py
1 parent d04f70d commit f576a28

File tree

1 file changed

+125
-0
lines changed

1 file changed

+125
-0
lines changed
Lines changed: 125 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,125 @@
1+
import os
2+
import asyncio
3+
from lightrag import LightRAG, QueryParam
4+
from lightrag.utils import EmbeddingFunc
5+
import numpy as np
6+
from dotenv import load_dotenv
7+
import aiohttp
8+
import logging
9+
10+
logging.basicConfig(level=logging.INFO)
11+
12+
load_dotenv()
13+
14+
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
15+
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
16+
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
17+
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
18+
19+
AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
20+
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")
21+
22+
WORKING_DIR = "./dickens"
23+
24+
if os.path.exists(WORKING_DIR):
25+
import shutil
26+
27+
shutil.rmtree(WORKING_DIR)
28+
29+
os.mkdir(WORKING_DIR)
30+
31+
32+
async def llm_model_func(
33+
prompt, system_prompt=None, history_messages=[], **kwargs
34+
) -> str:
35+
headers = {
36+
"Content-Type": "application/json",
37+
"api-key": AZURE_OPENAI_API_KEY,
38+
}
39+
endpoint = f"{AZURE_OPENAI_ENDPOINT}openai/deployments/{AZURE_OPENAI_DEPLOYMENT}/chat/completions?api-version={AZURE_OPENAI_API_VERSION}"
40+
41+
messages = []
42+
if system_prompt:
43+
messages.append({"role": "system", "content": system_prompt})
44+
if history_messages:
45+
messages.extend(history_messages)
46+
messages.append({"role": "user", "content": prompt})
47+
48+
payload = {
49+
"messages": messages,
50+
"temperature": kwargs.get("temperature", 0),
51+
"top_p": kwargs.get("top_p", 1),
52+
"n": kwargs.get("n", 1),
53+
}
54+
55+
async with aiohttp.ClientSession() as session:
56+
async with session.post(endpoint, headers=headers, json=payload) as response:
57+
if response.status != 200:
58+
raise ValueError(
59+
f"Request failed with status {response.status}: {await response.text()}"
60+
)
61+
result = await response.json()
62+
return result["choices"][0]["message"]["content"]
63+
64+
65+
async def embedding_func(texts: list[str]) -> np.ndarray:
66+
headers = {
67+
"Content-Type": "application/json",
68+
"api-key": AZURE_OPENAI_API_KEY,
69+
}
70+
endpoint = f"{AZURE_OPENAI_ENDPOINT}openai/deployments/{AZURE_EMBEDDING_DEPLOYMENT}/embeddings?api-version={AZURE_EMBEDDING_API_VERSION}"
71+
72+
payload = {"input": texts}
73+
74+
async with aiohttp.ClientSession() as session:
75+
async with session.post(endpoint, headers=headers, json=payload) as response:
76+
if response.status != 200:
77+
raise ValueError(
78+
f"Request failed with status {response.status}: {await response.text()}"
79+
)
80+
result = await response.json()
81+
embeddings = [item["embedding"] for item in result["data"]]
82+
return np.array(embeddings)
83+
84+
85+
async def test_funcs():
86+
result = await llm_model_func("How are you?")
87+
print("Resposta do llm_model_func: ", result)
88+
89+
result = await embedding_func(["How are you?"])
90+
print("Resultado do embedding_func: ", result.shape)
91+
print("Dimensão da embedding: ", result.shape[1])
92+
93+
94+
asyncio.run(test_funcs())
95+
96+
embedding_dimension = 3072
97+
98+
rag = LightRAG(
99+
working_dir=WORKING_DIR,
100+
llm_model_func=llm_model_func,
101+
embedding_func=EmbeddingFunc(
102+
embedding_dim=embedding_dimension,
103+
max_token_size=8192,
104+
func=embedding_func,
105+
),
106+
)
107+
108+
book1 = open("./book_1.txt", encoding="utf-8")
109+
book2 = open("./book_2.txt", encoding="utf-8")
110+
111+
rag.insert([book1.read(), book2.read()])
112+
113+
query_text = "What are the main themes?"
114+
115+
print("Result (Naive):")
116+
print(rag.query(query_text, param=QueryParam(mode="naive")))
117+
118+
print("\nResult (Local):")
119+
print(rag.query(query_text, param=QueryParam(mode="local")))
120+
121+
print("\nResult (Global):")
122+
print(rag.query(query_text, param=QueryParam(mode="global")))
123+
124+
print("\nResult (Hybrid):")
125+
print(rag.query(query_text, param=QueryParam(mode="hybrid")))

0 commit comments

Comments
 (0)