-1
$\begingroup$

The problem is to solve the separable differential equation $\sqrt{xy}~~\frac{dy}{dx}=\sqrt{4-x}$.

My work thus far: $ \sqrt{xy}~~ {dy}=\sqrt{4-x}~~dx \\ \sqrt{y}~~ {dy}=\sqrt{\frac{4-x}{x}}~~dx \\ \int \sqrt{y}~~ {dy}= \int \sqrt{\frac{4-x}{x}}~~d x \\ \frac{2}{3} y^{3/2} =\int \sqrt{\frac{4-x}{x}}~~dx \\ \frac{2}{3} y^{3/2} =\int \sqrt{\frac 4 x - 1 }~~dx $

The right side is a difficult integral to evaluate.

Is there an easier approach I have missed, or should I persist in trying to solve the integral.

$\endgroup$

4 Answers 4

2
$\begingroup$

Hint: Apply the substitution $u=\frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $\int\frac{1}{t^2+1}dt=arctan(t)$.

$\endgroup$
1
$\begingroup$

Hint Sometimes an integral $\int \sqrt{f(x)} \, dx$ can be resolved by rearranging $u = \sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).

In our case, setting $u = \sqrt\frac{4 - x}{x}$ and rearranging and differentiating yields the substitution $$x = \frac{4}{u^2 + 1}, \qquad dx = -\frac{8 u\, du}{(u^2 + 1)^2},$$ which gives $$\int \sqrt\frac{4 - x}{x} dx = -8 \int \frac{u^2 \,du}{(u^2 + 1)^2} .$$ The latter integrand is rational and so can be solved with standard techniques.

The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = \tan \theta$, $du = \sec^2 \theta\, d\theta$.

$\endgroup$
1
$\begingroup$

Make the substitution $t = \sqrt{x}$, then

$$ \int 2\sqrt{4-x}\ \frac{dx}{2\sqrt{x}} = \int 2\sqrt{4-t^2}\ dt $$

This is a standard trig substitution. Let $t = 2\sin \theta$

\begin{align} \int 2\sqrt{4-t^2}dt &= \int 2\cdot 2\cos\theta\cdot 2\cos\theta\ d\theta \\ &= \int 8 \cos^2\theta\ d\theta \\ &= \int 4(1+\cos2\theta)\ d\theta \\ &= 4\theta + 2\sin2\theta + C \end{align}

Going backwards

\begin{align} 4\theta + 2\sin2\theta + C &= 4\theta + 4\sin\theta\cos \theta + C \\ &= 4\arctan\frac{t}{2} + t\sqrt{4-t^2} + C \\ &= 4\arcsin\frac{\sqrt{x}}{2} + \sqrt{x}\sqrt{4-x} + C \end{align}

$\endgroup$
0
$\begingroup$

Thankyou to the tips given. I will attempt to answer my question. $$ \sqrt{xy}~~\frac{dy}{dx}=\sqrt{4-x} \\ \sqrt{xy}~~ {dy}=\sqrt{4-x}~~dx \\ \sqrt{y}~~ {dy}=\sqrt{\frac{4-x}{x}}~~dx \\ \int \sqrt{y}~~ {dy}= \int \frac{ \sqrt {4-x}}{\sqrt x}~~dx \\ \frac{2}{3} y^{3/2} =\int \frac{ \sqrt {4-x}}{\sqrt x}~~dx \\ \text{ Make the substitution u = √x } \\ \frac{2}{3} y^{3/2} = 2\int \sqrt { 4- u^2} du \\ \\ \text{ Substitute w = u/2 } \\ \frac{2}{3} y^{3/2} = 8 \int \sqrt{ 1 - w ^2} ~dw \\ \text{ using trig substitution} \\ \frac{2}{3} y^{3/2} = 4 w \sqrt {1 -w^2}+4 \arcsin \left( w \right) + C \\ \text{back substituting } \\ \frac{2}{3} y^{3/2} = 4 \frac u 2 \sqrt {1 -\left( \frac u 2 \right) ^2}+4 \arcsin \left( \frac u 2 \right) + C \\ \frac{2}{3} y^{3/2} = 2 \sqrt x \sqrt {1 -\left( \frac {\sqrt x }{ 2} \right) ^2}+4 \arcsin \left( \frac {\sqrt x }{ 2} \right) + C \\ \frac{2}{3} y^{3/2} = 2 \sqrt x \sqrt {1 -\left( \frac {x}{4} \right)}+4 \arcsin \left( \frac {\sqrt x }{ 2} \right) + C \\ \frac{2}{3} y^{3/2} = 2 \sqrt x \frac{ \sqrt {4 -x }}{ \sqrt{4} } +4 \arcsin \left( \frac {\sqrt x }{ 2} \right) + C \\ \frac{2}{3} y^{3/2} = \sqrt x \sqrt {4 -x } +4 \arcsin \left( \frac {\sqrt x }{ 2} \right) + C \\ y^{3/2} =\frac{3}{2} \left( \sqrt x \sqrt {4 -x } +4 \arcsin \left( \frac {\sqrt x }{ 2} \right) + C \right) \\ y^{3/2} = \left( \frac{3}{2} \sqrt x \sqrt {4 -x } + 6 \arcsin \left( \frac {\sqrt x }{ 2} \right) + \frac 3 2 C \right) \\ y = \left( \frac{3}{2} \sqrt x \sqrt {4 -x } + 6 \arcsin \left( \frac {\sqrt x }{ 2} \right) + C \right) ^{2/3}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.