Open In App

Create a Pandas DataFrame from Lists

Last Updated : 07 Oct, 2024
Summarize
Comments
Improve
Suggest changes
Like Article
Like
Share
Report
News Follow

Converting lists to DataFrames is crucial in data analysis, Pandas enabling you to perform sophisticated data manipulations and analyses with ease.

List to Dataframe Example

# Simple list
data = [1, 2, 3, 4, 5]
# Convert to DataFrame
df = pd.DataFrame(data, columns=['Numbers'])

Here we will discuss different ways to create a Pandas Dataframe from the lists:

Create DataFrame from List using Dictionary

Example 1: To convert a list to a Pandas DataFrame, you can use the pd.DataFrame() constructor. This function takes a list as input and creates a DataFrame with the same number of rows and columns as the input list.

Python
# import pandas as pd
import pandas as pd

# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 
            'portal', 'for', 'Geeks']

# Calling DataFrame constructor on list
df = pd.DataFrame(lst)
print(df)

Output:

 0
0 Geeks
1 For
2 Geeks
3 is
4 portal
5 for
6 Geeks

Example 2: To use lists in a dictionary to create a Pandas DataFrame, we Create a dictionary of lists and then Pass the dictionary to the pd.DataFrame() constructor. Optionally, we can specify the column names for the DataFrame by passing a list of strings to the columns parameter of the pd.DataFrame() constructor.

Python
# importing pandas as pd 
import pandas as pd 
 
# list of name, degree, score
nme = ["aparna", "pankaj", "sudhir", "Geeku"]
deg = ["MBA", "BCA", "M.Tech", "MBA"]
scr = [90, 40, 80, 98]
 
# dictionary of lists 
dict = {'name': nme, 'degree': deg, 'score': scr} 
   
df = pd.DataFrame(dict)
   
print(df) 

Output:

 name  degree  score
0 aparna MBA 90
1 pankaj BCA 40
2 sudhir M.Tech 80
3 Geeku MBA 98

Convert List to Pandas Dataframe using zip()

To create a Pandas DataFrame from lists using zip(). We can also use the zip() function to zip together multiple lists to create a DataFrame with more columns.

Python
# import pandas as pd
import pandas as pd

# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 'portal', 'for', 'Geeks']

# list of int
lst2 = [11, 22, 33, 44, 55, 66, 77]

# Calling DataFrame constructor after zipping
# both lists, with columns specified
df = pd.DataFrame(list(zip(lst, lst2)),
               columns =['Name', 'val'])
print(df)

Output:

Name  val
0 Geeks 11
1 For 22
2 Geeks 33
3 is 44
4 portal 55
5 for 66
6 Geeks 77

Create DataFrame from List by Changing Datatype

To create a Pandas DataFrame using a multi-dimensional list with column names and dtypes specified. By specifying dtypes, we can ensure that the DataFrame is created with the correct data types.

Python
import pandas as pd

# List1 
lst = [['tom', 'reacher', 25], ['krish', 'pete', 30],
       ['nick', 'wilson', 26], ['juli', 'williams', 22]]

# Create DataFrame
df = pd.DataFrame(lst, columns=['FName', 'LName', 'Age'])

# Convert 'Age' column to float
df['Age'] = df['Age'].astype(float)

print(df)

Output:

   FName     LName   Age
0 tom reacher 25.0
1 krish pete 30.0
2 nick wilson 26.0
3 juli williams 22.0

Create DataFrame from List using Multi-dimensional List

To create a DataFrame using a multi-dimensional list, you can use the pd.DataFrame() constructor. The pd.DataFrame() constructor takes a list of lists as input and creates a DataFrame with the same number of rows and columns as the input list.

Python
# import pandas as pd
import pandas as pd 
  
# List1 
lst = [['tom', 25], ['krish', 30],
       ['nick', 26], ['juli', 22]]
  
df = pd.DataFrame(lst, columns =['Name', 'Age'])
print(df)

Output:

Name  Age
0 tom 25
1 krish 30
2 nick 26
3 juli 22

Create DataFrame from List with Index and Column Names

To create a DataFrame using a list with index and column names, you can use the pd.DataFrame() constructor with the index and columns parameters.

Python
# import pandas as pd
import pandas as pd

# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 'portal', 'for', 'Geeks']

# Calling DataFrame constructor on list
# with indices and columns specified
df = pd.DataFrame(lst, index =['a', 'b', 'c', 'd', 'e', 'f', 'g'],
                                              columns =['Names'])
print(df)

Output:

Names
a Geeks
b For
c Geeks
d is
e portal
f for
g Geeks

Convert List to Dataframe – FAQs

How to convert a list to a pandas DataFrame?

You can convert a Python list to a Pandas DataFrame using the ‘pd.DataFrame()’ constructor.

import pandas as pd

my_list = [1, 2, 3, 4, 5]
df = pd.DataFrame(my_list, columns=[‘Numbers’])

print(df)

How to make a pandas DataFrame a list?

To convert a Pandas DataFrame to a Python list, you can access the DataFrame values and convert them to a list using ‘.tolist()’.

import pandas as pd

df = pd.DataFrame({‘A’: [1, 2, 3], ‘B’: [4, 5, 6]})
my_list = df.values.tolist()

print(my_list)

How to create a pandas DataFrame from a list of tuples?

You can create a DataFrame from a list of tuples using the ‘pd.DataFrame()’ constructor and specifying column names.

import pandas as pd

data = [(‘Alice’, 25), (‘Bob’, 30), (‘Charlie’, 35)]
df = pd.DataFrame(data, columns=[‘Name’, ‘Age’])

print(df)

How to convert a nested list to a DataFrame?

To convert a nested list (list of lists) to a DataFrame, you can directly pass it to ‘pd.DataFrame()’.

import pandas as pd

nested_list = [[1, ‘Alice’, 25], [2, ‘Bob’, 30], [3, ‘Charlie’, 35]]
df = pd.DataFrame(nested_list, columns=[‘ID’, ‘Name’, ‘Age’])

print(df)

How to list DataFrames into one DataFrame in Pandas?

If you have multiple DataFrames and want to concatenate them row-wise into one DataFrame, you can use ‘pd.concat()’.

import pandas as pd

df1 = pd.DataFrame({‘A’: [1, 2], ‘B’: [3, 4]})
df2 = pd.DataFrame({‘A’: [5, 6], ‘B’: [7, 8]})

df_combined = pd.concat([df1, df2], ignore_index=True)

print(df_combined)



Next Article

Similar Reads

three90RightbarBannerImg