Skip to content

PRIS-CV/PIDSR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution

By Shuangfan Zhou, Chu Zhou, Youwei Lyu, Heng Guo, Zhanyu Ma, Boxin Shi, Imari Sato

Requirements

  • python=3.8.18
  • pytorch=2.0.1
  • cv2
  • numpy
  • tqdm
  • scikit-image

Dataset

We publicly release our dataset, which contains a total of 138 images.

data/
├── train/
│   ├── 001/
│   │   ├── RGB_0.png
│   │   ├── RGB_45.png
│   │   ├── RGB_90.png
│   │   └── RGB_135.png
│   ├── 002/
│   │   ├── RGB_0.png
│   │   ├── RGB_45.png
│   │   ├── RGB_90.png
│   │   └── RGB_135.png
│   └── .../
└── test/
    ├── 001/
    │   ├── RGB_0.png
    │   ├── RGB_45.png
    │   ├── RGB_90.png
    │   └── RGB_135.png
    ├── 002/
    │   ├── RGB_0.png
    │   ├── RGB_45.png
    │   ├── RGB_90.png
    │   └── RGB_135.png
    └── .../

Pre-trained models

We provide the pre-trained models for inference

Inference

  • You can run inference on the example raw images using the following command:
python infer.py

the results will be saved in the infer/ directory

  • or you can use your own dataset by specifying the --infer_path argument:
python infer.py --infer_path /path/to/your/data

Train

python train.py

Citation

If you find this work helpful to your research, please cite:

@inproceedings{pidsr2025zhou,  
title = {PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution},  
author = {Shuangfan, Zhou and Chu, Zhou and Youwei, Lyu and Heng, Guo and Zhanyu, Ma and Boxin, Shi and Imari, Sato},  
year = {2025},  
booktitle = CVPR,  
}

Acknowledgements

This code is built on Restormer. We thank the authors for sharing their codes.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages