Skip to content

gridfm/gridfm-graphkit

Repository files navigation

GridFM logo

gridfm-graphkit

DOI Docs Coverage Python License

This library is brought to you by the GridFM team to train, finetune and interact with a foundation model for the electric power grid.


Installation

You can install gridfm-graphkit directly from PyPI:

pip install gridfm-graphkit

To contribute or develop locally, clone the repository and install in editable mode:

git clone git@github.com:gridfm/gridfm-graphkit.git
cd gridfm-graphkit
python -m venv venv
source venv/bin/activate
pip install -e .

For documentation generation and unit testing, install with the optional dev and test extras:

pip install -e .[dev,test]

CLI commands

An interface to train, fine-tune, and evaluate GridFM models using configurable YAML files and MLflow tracking.

gridfm_graphkit <command> [OPTIONS]

Available commands:

  • train – Train a new model from scrathc
  • finetune – Fine-tune an existing pre-trained model
  • evaluate – Evaluate model performance on a dataset
  • predict – Run inference and save predictions

Training Models

gridfm_graphkit train --config path/to/config.yaml

Arguments

Argument Type Description Default
--config str Required. Path to the training configuration YAML file. None
--exp_name str Optional. MLflow experiment name. timestamp
--run_name str Optional. MLflow run name. run
--log_dir str Optional. MLflow logging directory. mlruns
--data_path str Optional. Root dataset directory. data

Examples

Standard Training:

gridfm_graphkit train --config examples/config/case30_ieee_base.yaml --data_path examples/data

Fine-Tuning Models

gridfm_graphkit finetune --config path/to/config.yaml --model_path path/to/model.pth

Arguments

Argument Type Description Default
--config str Required. Fine-tuning configuration file. None
--model_path str Required. Path to a pre-trained model file. None
--exp_name str MLflow experiment name. timestamp
--run_name str MLflow run name. run
--log_dir str MLflow logging directory. mlruns
--data_path str Root dataset directory. data

Evaluating Models

gridfm_graphkit evaluate --config path/to/eval.yaml --model_path path/to/model.pth

Arguments

Argument Type Description Default
--config str Required. Path to evaluation config. None
--model_path str Path to the trained model file. None
--exp_name str MLflow experiment name. timestamp
--run_name str MLflow run name. run
--log_dir str MLflow logging directory. mlruns
--data_path str Dataset directory. data

Running Predictions

gridfm_graphkit predict --config path/to/config.yaml --model_path path/to/model.pth

Arguments

Argument Type Description Default
--config str Required. Path to prediction config file. None
--model_path str Path to the trained model file. None
--exp_name str MLflow experiment name. timestamp
--run_name str MLflow run name. run
--log_dir str MLflow logging directory. mlruns
--data_path str Dataset directory. data
--output_path str Directory where predictions are saved. data

About

Train, finetune and interact with a foundation model for the electric power grid.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 7

Languages