Skip to content
Next Next commit
transformers add-new-model-like
  • Loading branch information
2015aroras committed Sep 15, 2025
commit 25ba75186a11a8ffc912f50424c0cf1050681660
2 changes: 2 additions & 0 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -483,6 +483,8 @@
title: FLAN-UL2
- local: model_doc/flaubert
title: FlauBERT
- local: model_doc/flex_olmo
title: FlexOlmo
- local: model_doc/fnet
title: FNet
- local: model_doc/fsmt
Expand Down
59 changes: 59 additions & 0 deletions docs/source/en/model_doc/flex_olmo.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
<!--Copyright 2025 the HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.


⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer.

-->


# FlexOlmo

## Overview

The FlexOlmo model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>.
<INSERT SHORT SUMMARY HERE>

The abstract from the paper is the following:

<INSERT PAPER ABSTRACT HERE>

Tips:

<INSERT TIPS ABOUT MODEL HERE>

This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>).
The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).

## Usage examples

<INSERT SOME NICE EXAMPLES HERE>

## FlexOlmoConfig

[[autodoc]] FlexOlmoConfig

## FlexOlmoForCausalLM

[[autodoc]] FlexOlmoForCausalLM

## FlexOlmoModel

[[autodoc]] FlexOlmoModel
- forward

## FlexOlmoPreTrainedModel

[[autodoc]] FlexOlmoPreTrainedModel
- forward
1 change: 1 addition & 0 deletions src/transformers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,7 @@
from .fastspeech2_conformer import *
from .flaubert import *
from .flava import *
from .flex_olmo import *
from .florence2 import *
from .fnet import *
from .focalnet import *
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/models/auto/configuration_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,7 @@
("fastspeech2_conformer_with_hifigan", "FastSpeech2ConformerWithHifiGanConfig"),
("flaubert", "FlaubertConfig"),
("flava", "FlavaConfig"),
("flex_olmo", "FlexOlmoConfig"),
("florence2", "Florence2Config"),
("fnet", "FNetConfig"),
("focalnet", "FocalNetConfig"),
Expand Down Expand Up @@ -578,6 +579,7 @@
("flan-ul2", "FLAN-UL2"),
("flaubert", "FlauBERT"),
("flava", "FLAVA"),
("flex_olmo", "FlexOlmo"),
("florence2", "Florence2"),
("fnet", "FNet"),
("focalnet", "FocalNet"),
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/models/auto/modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,7 @@ class _BaseModelWithGenerate(PreTrainedModel, GenerationMixin):
("fastspeech2_conformer_with_hifigan", "FastSpeech2ConformerWithHifiGan"),
("flaubert", "FlaubertModel"),
("flava", "FlavaModel"),
("flex_olmo", "FlexOlmoModel"),
("florence2", "Florence2Model"),
("fnet", "FNetModel"),
("focalnet", "FocalNetModel"),
Expand Down Expand Up @@ -651,6 +652,7 @@ class _BaseModelWithGenerate(PreTrainedModel, GenerationMixin):
("falcon", "FalconForCausalLM"),
("falcon_h1", "FalconH1ForCausalLM"),
("falcon_mamba", "FalconMambaForCausalLM"),
("flex_olmo", "FlexOlmoForCausalLM"),
("fuyu", "FuyuForCausalLM"),
("gemma", "GemmaForCausalLM"),
("gemma2", "Gemma2ForCausalLM"),
Expand Down
29 changes: 29 additions & 0 deletions src/transformers/models/flex_olmo/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# coding=utf-8
# Copyright 2025 the HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING

from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure


if TYPE_CHECKING:
from .configuration_flex_olmo import *
from .modeling_flex_olmo import *
else:
import sys

_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
191 changes: 191 additions & 0 deletions src/transformers/models/flex_olmo/configuration_flex_olmo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/flex_olmo/modular_flex_olmo.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_flex_olmo.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 the HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation


class FlexOlmoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlexOlmoModel`]. It is used to instantiate an FlexOlmo
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/FlexOlmo-1B-7B-0924](https://huggingface.co/allenai/FlexOlmo-1B-7B-0924).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the FlexOlmo model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FlexOlmoModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 16):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
clip_qkv (`float`, *optional*):
If not `None`, elements of query, key and value attention states are clipped so that their
absolute value does not exceed this value.
num_experts_per_tok (`int`, *optional*, defaults to 8):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 64):
Number of routed experts.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.01):
The aux loss factor for the total loss.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the topk probabilities.

```python
>>> from transformers import FlexOlmoModel, FlexOlmoConfig

>>> # Initializing a FlexOlmo 7B A1B style configuration
>>> configuration = FlexOlmoConfig()

>>> # Initializing a model from the FlexOlmo 7B A1B style configuration
>>> model = FlexOlmoModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "flex_olmo"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=50304,
hidden_size=2048,
intermediate_size=2048,
num_hidden_layers=16,
num_attention_heads=16,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
clip_qkv=None,
num_experts_per_tok=8,
num_experts=64,
output_router_logits=False,
router_aux_loss_coef=0.01,
norm_topk_prob=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads

# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.clip_qkv = clip_qkv
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.norm_topk_prob = norm_topk_prob
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)

super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)


__all__ = ["FlexOlmoConfig"]
Loading