Skip to content

jinnan-chen/HGM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generalizable Human Gaussians from Single-View Image (ICLR 2025)

Overview

We propose a single-view generalizable Human Gaussian Model (HGM), a diffusion-guided framework for 3D human modeling from a single image. Our approach enables high-quality human reconstruction that generalizes well to novel viewpoints.

Installation

Dependencies

pip install -r requirements.txt

Install spconv

git clone https://github.com/traveller59/spconv --recursive
cd spconv
git checkout abf0acf30f5526ea93e687e3f424f62d9cd8313a
export CUDA_HOME="/usr/local/cuda-10.0"
python setup.py bdist_wheel
cd dist
pip install spconv-1.2.1-cp36-cp36m-linux_x86_64.whl

Body Models

Download the following models:

Dataset Preparation

You need to prepare your own dataset with multiview renderings:

Structure your dataset following this format:

dataset/
├── img/
│   ├── 0000_000/0.jpg     # (sample0-view0)
│   ├── 0000_001/0.jpg     # (sample0-view1)
│   ├── ...
│   └── camera_params.json
├── parm/
│   ├── 0000_000/0_extrinsic.npy    # (sample0-view0)
│   ├── 0000_001/0_extrinsic.npy    # (sample0-view1)
│   ├── ...
│   └── camera_params.json
├── mask/
│   ├── ...
│   └── ...

Adjust the camera system in provider_objaverse.py to fit your dataset's camera configuration.

Training

The training code is located in main.py.

We supervise gaussians from three different sources:

  • Gaussians from UNet predictions
  • Gaussians from the SMPL branch
  • Merged Gaussians from both branches

Checkpoint

https://drive.google.com/file/d/120Ju9WAmLo6vnn_SafTdzxbN3ZLrvdoP/view?usp=drive_link

Infer

CUDA_VISIBLE_DEVICES=0 python3 infer.py big --resume ### --workspace ### --num_workers 1 --num_input_views 1 --mode '5' --dataset ### --mode4 'att' --mode5 'att' --smplx

Acknowledgements

Our code is based on:

Citation

If you find our code or paper helps, please consider citing:

@article{chen2024generalizable,
  title={Generalizable Human Gaussians from Single-View Image},
  author={Chen, Jinnan and Li, Chen and Zhang, Jianfeng and Zhu, Lingting and Huang, Buzhen and Chen, Hanlin and Lee, Gim Hee},
  journal={arXiv preprint arXiv:2406.06050},
  year={2024}}

About

ICLR 2025: Generalizable Human Gaussians from Single View Image

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages