Skip to main content

A visual graph analytics library for extracting, transforming, displaying, and sharing big graphs with end-to-end GPU acceleration

Project description

PyGraphistry: Leverage the power of graphs & GPUs to visualize, analyze, and scale your data

Build Status CodeQL Documentation Status Latest Version Latest Version License PyPI - Downloads

Uptime Robot status Twitter Follow

Demo: Interactive visualization of 80,000+ Facebook friendships (source data)

PyGraphistry is an open source Python library for data scientists and developers to leverage the power of graph visualization, analytics, AI, including with native GPU acceleration:

From global 10 banks, manufacturers, news agencies, and government agencies, to startups, game companies, scientists, biotechs, and NGOs, many teams are tackling their graph workloads with Graphistry.

Gallery

The notebook demo gallery shares many more live visualizations, demos, and integration examples

Twitter Botnet
Edit Wars on Wikipedia
(data)
100,000 Bitcoin Transactions
Port Scan Attack
Protein Interactions
(data)
Programming Languages
(data)

Install

Common configurations:

  • Minimal core

    Includes: The GFQL dataframe-native graph query language, built-in layouts, Graphistry visualization server client

    pip install graphistry
    

    Does not include graphistry[ai], plugins

  • No dependencies and user-level

    pip install --no-deps --user graphistry
    
  • GPU acceleration - Optional

    Local GPU: Install RAPIDS and/or deploy a GPU-ready Graphistry server

    Remote GPU: Use the remote endpoints.

For further options, see the installation guides

Visualization quickstart

Quickly go from raw data to a styled and interactive Graphistry graph visualization:

import graphistry
import pandas as pd

# Raw data as Pandas CPU dataframes, cuDF GPU dataframes, Spark, ...
df = pd.DataFrame({
    'src': ['Alice', 'Bob', 'Carol'],
    'dst': ['Bob', 'Carol', 'Alice'],
    'friendship': [0.3, 0.95, 0.8]
})

# Bind
g1 = graphistry.edges(df, 'src', 'dst')

# Override styling defaults
g1_styled = g1.encode_edge_color('friendship', ['blue', 'red'], as_continuous=True)

# Connect: Free GPU accounts and self-hosting @ graphistry.com/get-started
graphistry.register(api=3, username='your_username', password='your_password')

# Upload for GPU server visualization session
g1_styled.plot()

Explore 10 Minutes to Graphistry Visualization for more visualization examples and options

PyGraphistry[AI] & GFQL quickstart - CPU & GPU

CPU graph pipeline combining graph ML, AI, mining, and visualization:

from graphistry import n, e, e_forward, e_reverse

# Graph analytics
g2 = g1.compute_igraph('pagerank')
assert 'pagerank' in g2._nodes.columns

# Graph ML/AI
g3 = g2.umap()
assert ('x' in g3._nodes.columns) and ('y' in g3._nodes.columns)

# Graph querying with GFQL
g4 = g3.chain([
    n(query='pagerank > 0.1'), e_forward(), n(query='pagerank > 0.1')
])
assert (g4._nodes.pagerank > 0.1).all()

# Upload for GPU server visualization session
g4.plot()

The automatic GPU modes require almost no code changes:

import cudf
from graphistry import n, e, e_forward, e_reverse

# Modified -- Rebind data as a GPU dataframe and swap in a GPU plugin call
g1_gpu = g1.edges(cudf.from_pandas(df))
g2 = g1_gpu.compute_cugraph('pagerank')

# Unmodified -- Automatic GPU mode for all ML, AI, GFQL queries, & visualization APIs
g3 = g2.umap()
g4 = g3.chain([
    n(query='pagerank > 0.1'), e_forward(), n(query='pagerank > 0.1')
])
g4.plot()

Explore 10 Minutes to PyGraphistry for a wider variety of graph processing.

PyGraphistry documentation

Graphistry ecosystem

Community and support

Contribute

See CONTRIBUTING and DEVELOP for participating in PyGraphistry development, or reach out to our team

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphistry-0.39.0.tar.gz (296.1 kB view details)

Uploaded Source

Built Distribution

graphistry-0.39.0-py3-none-any.whl (317.4 kB view details)

Uploaded Python 3

File details

Details for the file graphistry-0.39.0.tar.gz.

File metadata

  • Download URL: graphistry-0.39.0.tar.gz
  • Upload date:
  • Size: 296.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for graphistry-0.39.0.tar.gz
Algorithm Hash digest
SHA256 76ff2af18c95740098262fd3e2ef89e51dfc8e62d17fdd5cf2b1b6a24772c6bb
MD5 80868393dd7c70e13df5b43b18ede042
BLAKE2b-256 7b37c988b80aea42e3273672fb12ac0dbb94a73ea037ab4c7a717c8d9d419594

See more details on using hashes here.

File details

Details for the file graphistry-0.39.0-py3-none-any.whl.

File metadata

  • Download URL: graphistry-0.39.0-py3-none-any.whl
  • Upload date:
  • Size: 317.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for graphistry-0.39.0-py3-none-any.whl
Algorithm Hash digest
SHA256 86f9a946a4845a23c7ccc411a7f6857b45808171b436d1605354d2b8dcd2702b
MD5 1f0f89ded8d0d83bf46a86f31e1c2e13
BLAKE2b-256 eb6fc9363fee1d1a0d97f8fc29815068c5d533b4567ef2663989849a6c0694ef

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page