Five ways the ABACUS label advances nature-based carbon removal

From more-accurate measurement of carbon dioxide removal to greater diversity in restoration design, the ABACUS label’s requirements help advance the integrity of restoration projects in the voluntary carbon market.

Amazon cofounded the Climate Pledge in 2019 to commit to reaching net-zero carbon by 2040. The first priority of the pledge is to implement decarbonization strategies — in line with the Paris Agreement — through operational changes such as improving efficiency, driving forward scalable carbon-free energy sources, reducing waste, and innovating materials.

However, alongside real business change that directly reduces greenhouse gas emissions, there is also need for large-scale investments in climate change mitigation outside of our value chain (what we call carbon neutralization). At Amazon, we do this through both nature-based solutions and technological carbon dioxide removal.

Nature-based carbon removal harnesses the power of photosynthesis to sequester carbon in natural and managed ecosystems. This means altering land management in alignment with nature through native reforestation, agroforestry, and other forms of high-quality restoration. These activities alone have the potential to remove 2–4 billion tons of carbon per year; that’s almost half of the estimated 5–10 billion tons per year that experts estimate is likely needed through the end of the century in order to keep our global temperatures at safe levels.

While the voluntary carbon market has the potential to bring billions of dollars of finance to restoration projects, less than 3% of credits issued to date come from nature-based carbon removal. This is due to the voluntary carbon market’s prices’ falling below the costs of high-quality nature-based restoration.

That’s where ABACUS comes in. ABACUS is a set of principles and requirements, codified within Verra’s Verified Carbon Standard, that helps advance the integrity of restoration projects within the voluntary carbon market. ABACUS was developed by a working group of expert practitioners, conservation professionals, and scientists — including Amazon’s own carbon neutralization scientists — in an effort to raise the quality bar for agroforestry and native-restoration projects. The ABACUS label has already begun to raise the quality bar for leading buyers.

Below are five big ideas within ABACUS that help raise the bar on scientific rigor and transparency.

  1. Dynamic baseline to measure additionality

    Historically, restoration carbon projects assume that whatever land use was occurring before a project takes place — pasture or agriculture, for example — would have continued unaltered without the project intervention. This assumption ignores the myriad ecological, economic, and policy dynamics that could affect carbon removal without assistance from the voluntary carbon market.

    Related content
    Investing in 500+ solar and wind projects, bringing carbon-free energy to dirty grids, and buying Renewable Energy Certificates all played a role.

    In addition to demonstrating that a project would not be viable without carbon credit finance, ABACUS requires a treatment-control approach to measuring additionality, or the carbon removal resulting from the project above and beyond what would have occurred otherwise. This means matching the project “treatment” area — based on historical, satellite-based proxies for biomass — to a population of “control” plots that are followed through time. Each of these controls represents a potential alternate reality for the project in the absence of restoration.

    If the control plots regain forest carbon at pace with the project, this indicates that the project may have regained forest carbon on its own, without the intervention. If the control plots remain low-carbon, degraded land, we can be more confident that the project’s climate impacts are additional. By treating additionality as dynamic instead of static, we’re able to obtain a more data-driven estimation of the true impact of restoration.

  2. Carbon projects as engines for agricultural production

    Carbon removal cannot come at the expense of food production; in fact, these challenges are inextricably linked. Under some projections, agricultural production will need to double by 2050, even as the least productive pasture and croplands are restored to forest cover. Sustainably intensifying agriculture to increase food production, while sparing land for carbon removal — or, better, integrating carbon removal within productive agricultural systems — is critical to reconciling these needs.

    Drone footage of a mature cocoa, coconut, and mahogany agroforestry system, adjacent to a degraded pasture in southeast Pará, Brazil.
    ABACUS seeks to restore degraded pasturelands to diverse agroforestry systems like this one. (Drone footage courtesy of Eric Plançon)

    But the voluntary carbon market is not equipped to tackle this challenge. Carbon removal projects that displace agricultural production often result in indirect land use change and associated emissions, as agricultural markets replace lost production to serve growing demand (“leakage”).

    These crop- and region-specific leakage effects are difficult to quantify reliably. Conventional leakage methodologies impose standardized deductions based on default carbon leakage rates when agricultural production is displaced. This creates a persistent source of uncertainty and risk of over-crediting, and the approach misses an opportunity to build synergies between restoration and agricultural production.

    Related content
    From investing in new carbon-free energy projects to advocating for grid modernization and collaborating with key stakeholders around the world, Amazon is working toward a cleaner energy future.

    ABACUS instead takes a “food-forward” approach to leakage accounting. Rather than using an imprecise default value to quantify leakage effects, ABACUS requires projects to eliminate leakage by maintaining or enhancing agricultural production in the project areas and surrounding landscapes. By recognizing the land-sparing effect of enhancing production of different types of commodities, ABACUS encourages projects to co-optimize for carbon and agricultural production and avoids locking regions into specific agricultural products. The working group is engaging partners to create commodity-specific leakage metrics based on land-carbon “opportunity costs” to estimate, and mitigate, the impacts of leakage.

  3. Abbreviated crediting periods for durability assurance

    Carbon stored in ecosystems can be highly durable, but it faces persistent, long-term climate risks such as fire, drought, and land use change, which must be responsibly managed. Nature-based carbon removal should seek “effective permanence” — an actual net greenhouse gas benefit to the atmosphere that is equal to, or greater than, the net benefit represented by the credits. In addition, the removal should ensure that this balance can be maintained indefinitely.

    On the other hand, agroforestry and restoration projects can catalyze shifts to land use systems that durably enhance carbon storage even beyond what is credited. This can happen through spillover effects, continued carbon removal after the crediting period, and biophysical cooling feedbacks, among other factors. ABACUS includes several methods that improve the likelihood that nature-based carbon remains durably stored — for example, requiring projects to plant ecologically appropriate restoration systems and to create public plans for the longevity of project activities even after the support of carbon revenues.

    Related content
    Amazon teams up with RTI International, Schlumberger, and International Paper on a project selected by the US Department of Energy to scale carbon capture and storage for the pulp and paper industry.

    One of ABACUS’s key innovations is to limit the crediting period in an effort to maximize uncredited removals. The ABACUS working group found that revenues from credits generated beyond year 30 are mostly immaterial to investment decisions today, due to their heavy discounts. By shortening the crediting period to 40 years maximum — as opposed to as much as 100 years under some voluntary carbon market standards — ABACUS will create a source of uncredited carbon removal that can serve as an additional buffer against future reversals.

    Additionally, ABACUS proposes that projects will be required to allocate a portion of carbon credits issued late in the crediting period (i.e., years 31–40) to a “long-term permanence mechanism” such as an enhanced buffer pool or insurance product. Achieving increased confidence in the effective permanence of nature-based carbon credits may require stringing together removals or replacing a moderate-durability credit with a high-durability credit, if and when previously credited removals are reversed. Economically, such a construct is currently likely to be cost effective compared to today’s high-durability carbon dioxide removal.

  4. Going beyond commercial monoculture plantations

    Forest plantations already cover nearly 300 million hectares globally — roughly equivalent to the entire area of India. That figure has more than doubled in the last 30 years, without a robust voluntary carbon market, and it is projected to continue growing to provide timber, pulpwood, firewood, and charcoal to increasing populations and a growing economy.

    Brazil_Drone.png
    Orthorectified mosaic capturing a range of land management types on a typical farm in the Amazon basin, Brazil. We can see the contrast between low-carbon-density pasture (left) and diverse agroforestry (center), which combines shade-tolerant commodity production with native, carbon-rich hardwood trees. ABACUS is designed to support native restoration and agroforestry interventions on formerly forested, degraded land.
    Photos captured and combined by ICRAF-Brazil on behalf of the Agroforestry Accelerator.

    As a first step, ABACUS prohibits most monocultures and requires project developers to use observed or modeled data to demonstrate that planted systems are ecologically appropriate for the landscape. This approach avoids projects seeking to reforest with systems that aren’t suitable for the location’s native biomass potential — a function of climate, soil type, water availability, and elevation, among other things. Credit buyers are encouraged to send demand signals that further encourage biodiverse, ecologically sound, and socially beneficial restoration.

  5. Transparency to foster competition on quality

    For some aspects of restoration, it’s challenging to prescribe universally applicable requirements without stifling innovation and local knowledge: every restored ecosystem is unique in its own way. ABACUS introduces multiple requirements for added transparency that will allow buyers, investors, and the public to better assess for themselves the effectiveness of project designs and measurement.

    Related content
    Amazon advocates for updating carbon accounting to measure where renewable-energy projects will have the greatest impact.

    For example, ABACUS projects will need to publish their in-situ inventory measurements, systematically justify their use of allometric or other scaling models, and report on design approaches to avoid measurement or sampling bias. Instead of once every five years or so, ABACUS requires projects to annually map disturbances, to ensure that carbon credited and subsequently reversed is immediately identified. With enhanced transparency, the ABACUS working group hopes to incentivize project developers to compete on quality.

  6. ABACUS doesn’t solve all of the challenges of quantifying the complete climate impact of nature-based carbon removal, and it is no replacement for the stakeholder engagement necessary to ensure genuine socio-economic benefits on the ground. Many important improvements remain for future versions of the label’s principles and requirements. As we learn, the ABACUS working group will continue to enhance the scientific rigor of and public confidence in ecosystem restoration, catalyzing rural restoration economies and livelihoods and — if we succeed — helping to enable billions of tons of ecosystem carbon removal across the world.

Research areas

Related content

GB, Cambridge
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to advance the state-of-the-art in developing efficient multimodal language models across our product portfolio. Through close hardware-software integration, we design and train models for resource efficiency across the hardware and software tech stack. The Silicon and Solutions Group Edge AI team is looking for a talented Sr. Applied Scientist who will lead our efforts on inventing evaluation methods for multimodal language models and agents for new devices, including audio and vision experiences. Key job responsibilities - Collaborate with cross-functional engineers and scientists to advance the state of the art in multimodal model evaluations for devices, including audio, images, and videos - Invent and validate reliability for novel automated evaluation methods for perception tasks, such as fine-tuned LLM-as-judge - Develop and extend our evaluation framework(s) to support expanding capabilities for multimodal language models - Analyze large offline and online datasets to understand model gaps, develop methods to interpret model failures, and collaborate with training teams to enhance model capabilities for product use cases - Work closely with scientists, compiler engineers, data collection, and product teams to advance evaluation methods - Mentor less experienced Applied Scientists A day in the life As a Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to innovative methods for evaluating new product experiences and discover ways to enhance our model capabilities and enrich our customer experiences. You'll research new methods for reliably assessing perception capabilities for audio-visual tasks in multimodal language models, design and implement new metrics, and develop our evaluation framework. You'll collaborate across teams of engineers and scientists to identify and root cause issues in models and their system integration to continuously enhance the end-to-end experience. About the team Our Edge AI science team brings together our unique skills and experiences to deliver state-of-the-art multimodal AI models that enable new experiences on Amazon devices. We work at the intersection of hardware, software, and science to build models designed for our custom silicon.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps Stay up-to-date with advancements and the latest modeling techniques in the field Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, Palo Alto
About Sponsored Products and Brands The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team SPB Ad Response Prediction team is your choice, if you want to join a highly motivated, collaborative, and fun-loving team with a strong entrepreneurial spirit and bias for action. We are seeking an experienced and motivated Applied Scientist with machine learning engineering background who loves to innovate at the intersection of customer experience, deep learning, and high-scale machine learning systems. We are looking for a talented Applied Scientist with a strong background in machine learning engineering to join our team and help us grow the business. In this role, you will partner with a team of engineers and scientists to build advanced machine learning models and infrastructure, from training to inference, including emerging LLM-based systems, that deliver highly relevant ads to shoppers across all Amazon platforms and surfaces worldwide. Key job responsibilities As an Applied Scientist, you will: * Develop scalable and effective machine learning models and optimization strategies to solve business problems. * Conduct research on new machine learning modeling to optimize all aspects of Sponsored Products business. * Enhance the scalability, automation, and efficiency of large-scale training and real-time inference systems. * Pioneer the development of LLM inference infrastructure to support next-generation GenAI workloads at Amazon Ads scale.
US, WA, Seattle
The Economics Science team in the Amazon Manager Experience (AMX) organization builds science models supporting employee career-related experiences such as their evaluation, learning and development, onboarding, and promotion. Additionally, the team conducts experiments for a wide range of employee and talent-related product features, and measures the impact of product and program initiatives in enhancing our employees' career experiences at Amazon. The team is looking for an Economist who specializes in the field of macroeconomics and time series forecasting. This role combines traditional macroeconomic analysis with modern data science techniques to enhance understanding and forecasting of workforce dynamics at scale. Key job responsibilities The economists within ALX focus on enhancing causal evaluation, measurement, and experimentation tasks to ensure various science integrations and interventions achieve their goals in building more rewarding careers for our employees. The economists develop and implement complex randomization designs that address the nuances of experimentation in complex settings where multiple populations interact. Additionally, they engage in building a range of econometric models that surface various proactive and reactive inspection signals, aiming toward better alignment in the implementation of talent processes. The economists closely collaborate with scientists from diverse backgrounds, as well as program and product leaders, to implement and assess science solutions in our products.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As a Data Scientist, you will • Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges • Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production • Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder • Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. The Applied Scientist will be in a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in Natural Language Processing (NLP) or Computer Vision (CV) related tasks. They will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. They will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Their work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve solutions powering customer experience on Alexa+. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership.
US, CA, Sunnyvale
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, CA, Mountain View
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As an Applied Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.