Solomonic learning: Large language models and the art of induction

Large language models’ emergent abilities are improving with scale; as scale grows, where are LLMs heading? Insights from Ray Solomonoff’s theory of induction and stochastic realization theory may help us envision — and guide — the limits of scaling.

“One year of research in neural networks is sufficient to believe in God.” The writing on the wall of John Hopfield’s lab at Caltech made no sense to me in 1992. Three decades later, and after years of building large language models, I see its sense if one replaces sufficiency with necessity: understanding neural networks as we teach them today requires believing in an immanent entity.

Stefano Soatto.png
Stefano Soatto, a vice president and distinguished scientist with Amazon Web Services.
Credit: UCLA Samueli

Let’s start from the basics: when we teach machine learning, we say that memorization is bad, because it leads to overfitting and prevents generalization. Generalization is good — so good that, to achieve it, we incentivize machines not to memorize, through “regularization”. We even prove theorems — so-called uniform generalization bounds — that guarantee generalization no matter what distribution the data are drawn from, provided we avoid memorization.

But my mother always told me not to generalize, and she had me commit to memory countless useless poems in elementary school. Why am I teaching that generalization is good and memorization is bad, when I was taught the opposite?

Biology vs. technology

Machine learning has historically drawn inspiration from biology. But biological systems have hard ontogenic and phylogenic memory bounds: our synapses cannot memorize everything we experience, and our DNA cannot transmit the knowledge we’ve accumulated to our descendants. (As an educator and father, I often wished I could upload what I have learned into my students and kids. I haven’t figured that one out, but can we at least do it for AI models?) Furthermore, biology imposes a strong evolutionary bias toward minimizing inference latency: when facing an animal in the wild and having to determine who’s whose meal, we can’t reason through all past memories lest the decision be made for us.

In other words, biological systems are forced to adopt inductive learning, using specific data from the past (or a “training set”) to devise a process for handling any future data. Success in inference from inductive learning (or more simply, induction) relies on the so-called inductive hypothesis, that past performance can guarantee future rewards (the primate species called “financial advisor” has evolved out of this belief).

Related content
New method leverages vision-language models to formalize a comparison that had previously required human judgment.

Technology does not have the limitations of biological systems: there are no hard memory bounds (we can always add more storage) and no hard computational bounds (we can fire up more computers), at least until we hit cosmic limits. If we accept that machines do not have the same limitations as biology, what is the best inference paradigm for them? That is, given a training set and a test query, how can they devise the best answer?[1] If we want our model to operate in the constantly evolving real world, we shouldn’t assume the existence of a single distribution from which all data are drawn, in principio, nunc, et semper.

Inference that allows processing the training data at inference time is called transductive inference, or transduction. Transduction calls for us to memorize and reason, unlike induction, which wants us to generalize and forget. To perform optimal inference with respect to any hypothetical distribution in the future, one must memorize past data and, only when presented with a specific query, deploy “reasoning” skills and access memory to compute the best possible answer to that query.

Induction calls for forgetting what does not matter during training, under the assumption that the training set is representative of all future data. But in reality, one cannot know what data will be useful when, so memorization is wise if one can afford it, even when the data — like the writing on John Hopfield’s lab’s wall — does not make sense in that moment.

Transductive inference from inductive learning

Uniform generalization bounds may seem powerful because they are valid for any distribution; but for them to work, there can be only one distribution from which both past and future data are independently sampled. Paraphrasing the statistician Bruno de Finetti, this distribution does not exist in any objective or material sense. It is an abstract concept, the product of our imagination. Something we concoct to guide our intuition and analysis.

Related content
In addition to its practical implications, recent work on “meaning representations” could shed light on some old philosophical questions.

The inductive hypothesis is fundamentally not verifiable: any finite training data could have been drawn with identical likelihood from infinitely many distributions, so even if there was a single true one, how would we know which? Once the present is past, we cannot repeat the experiment. The inductive hypothesis is a statement of faith and uniform generalization bounds an expression of hope, not quite within the scientific realm.

Don’t get me wrong: hope can pay off. The future often does resemble the past. But many of the mechanisms that generate the data we care about today, in business, finance, climate, and language, evolve over time. The same word can carry a different meaning today than it did a century, or even a decade, ago. The point is that whether the inductive hypothesis holds or not cannot be known ahead of time.

Solomonoff inference

What if we forgo generalization and embrace memorization and reasoning? Is that what LLMs are doing? If so, where are they heading? What does the limit of optimal transductive inference look like?

The answer was given in 1964 by the mathematician Ray Solomonoff and is now known, somewhat confusingly, as Solomonoff induction. I will refer to it as Solomonoff inference, which can be thought of as the limit of scaling laws when we allow memory, computational capacity, and time to grow to infinity.

Solomonoff inference is optimal with respect to all computable distributions, averaged with respect to the universal prior. The Church-Turing thesis predicates that any physically realizable mechanism belongs to this class. While infeasible in practice, since it requires infinite resources, Solomonoff’s algorithm is quite simple: execute all programs in increasing order of length until one manages to spit out all the data observed up to now, bit by bit, if it terminates.

Related content
The surprising dynamics related to learning that are common to artificial and biological systems.

The optimal algorithm is basically a lookup table with a switch. There is no insight, no knowledge, not even learning. If presented with the same query twice in a row, the optimal algorithm would repeat the same procedure all over, having learned nothing from past experience.

Solomonoff inference is quite unlike neural networks, which are trained by comparing gradient vectors in a high-dimensional space, where the data are embedded. But could it be that, as we scale LLMs to larger and larger sizes, their behavior is beginning to resemble Solomonoff inference? After all, LLMs are known to memorize, albeit imperfectly, and they can perform universal computation, at least if augmented with a scratchpad. Indeed, LLMs are already able to perform rudimentary transductive inference, now known as “in-context learning” — somewhat confusingly, as it involves no learning: if presented with the same context twice, an LLM would repeat the same process, with no improvement from experience.

So, if LLMs were to begin to perform Solomonoff inference, would they become “superintelligent”? Given no accepted definition of intelligence, let alone its superlatives, many tacitly assume inference performance as its proxy: “smarter” models (or students) perform better on tests, whether the SAT, GRE, or BAR, or the famed IMO math competition. The higher the score, the more “intelligent” the model must be! But the absolute best would be Solomonoff’s algorithm, and no matter what one’s definition of intelligence is, Solomonoff’s algorithm cannot meet it: if by mistake the IMO printed each question twice, Solomonoff’s algorithm would redo the same work twice, not exactly what most would call “intelligent” behavior.

As an analogy, an “inductive student” is a diligent pupil who studies the textbook and completes all homework assignments and practice problems before showing up at the exam. So long as the questions are close enough to practice problems, the inductive student does well. On the occasional odd (or out-of-distribution, as a believer in induction would say) question, the inductive student may not do as well.

By contrast, the “transductive student” does not study at all and instead shows up at the exam with the textbook in hand. Only after reading the first question does the transductive student go through the book to find all the pieces needed to assemble an answer. The student could, in principle, repeat the exercise all the way to the last question, learning nothing in the process. As Solomonoff showed us, there is no need to be smart if one has unbounded time, memory, and computational power.

Do we want models that perform well on benchmark exams, or is the kind of “intelligence” we want something else? Fortunately, inductive and transductive inference are not mutually exclusive. In fact, their difference is quite subtle, as one could frame either as a special case of the other, and the two coincide when the data are independently and identically distributed.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

What matters is that LLMs are inductively trained transductive-inference engines and can therefore support both forms of inference.[2] They are capable of performing inference by inductive learning, like any trained classifier, akin to Daniel Kahneman’s “system 1” behavior — the fast thinking of his book title Thinking Fast and Slow. But LLMs are also capable of rudimentary forms of transduction, such as in-context-learning and chain of thought, which we may call system 2 — slow-thinking — behavior. The more sophisticated among us have even taught LLMs to do deduction — the ultimate test for their emergent abilities.

AI models’ inferential abilities are improving organically with scale — although they’re still inferior to those of the best humans on most tasks. But they are also being actively fostered through the use of formal-verification tools such as LEAN, as is happening at AWS. One could call this paradigm Solomonic learning: embrace memorization and foster reasoning, yet do not eschew induction. Simple tasks that might benefit from past experience can be solved inductively, saving time and energy, but doing so requires “understanding” and “insight”.

Given that paradigm, the question is what classes of models best support Solomonic learning.

Architectures for Solomonic learning

Solomonic learning requires models that can memorize and perform computation at inference time, in addition to performing ordinary induction. The model architectures therefore need eidetic (verbatim) working memory, which could fade over time, to support computation; but they also need long-term memory to easily retrieve facts from the distant past (the purpose for which humans invented the printing press).

To adapt to changing conditions, they need their long-term memory to decay in synchrony with changes to the mechanisms that generate the data they process. Evolution does that for biological agents, to the benefit of the species rather than any one individual. Transformers, the workhorses of current LLMs, have eidetic (verbatim) memory “in context”, but only until tokens slide out of context. They also have permanent memory “in weights”, but training data are not accessible eidetically from the weights, and there is no long-term adaptation. Eidetic long-term memory can be accessed through RAG (retrieval-augmented generation), but in current Transformers, RAG is not integrated into the primary (autoregressive) inference loop.

Stochastic realization theory and input-dependent state space models

Half a century ago, stochastic realization theory tackled the question of how to model sequential data for downstream decision or control tasks. The “state” of the model was defined as the function of past data that is sufficient for the future, meaning that, given the state, one can discard all past data and predict future data as well as if the data had been retained.

The trivial state is the data itself. An optimal state, by definition, supports an optimal predictor, which is one that makes the prediction error unpredictable. Then, by construction, the state contains all the “information” in past data. During training, the states of LLMs are their weights, so it should be no surprise that next-token prediction is the method of choice for training them. During inference, the state of a Transformer-based LLM is the sliding window of tokens, which is “deadbeat”, meaning that it decays to zero in finite steps without a driving input.

B'MOJO.jpg
In B’MOJO, a state-space model (SSM) computes a fading memory that represents long-range dependencies through a fixed-dimensional representation (pink). The eidetic memory, by contrast, selects tokens from the past (dark-blue x's) using an innovation test over the SSM output and appends them to the current sliding window. Adapted from "B'MOJO: Hybrid state space realizations of foundation models with eidetic and fading memory".

In general, as we observe more and more data during both training and inference, the state must grow apace. In the 1970s, an unbounded state was unthinkable, so the key question was how to find a fixed-dimensional state that is optimal even as the data volume grows to infinity. Therefore, stochastic realization theory focused on Markov processes that admit a finite-dimensional state.

Since any finite-memory sequence could be modeled as the output of a linear model driven by white zero-mean Gaussian noise, the attention was all on linear state-space models (SSMs). While simplistic, such SSMs were good enough to take us to the moon. Today, an unbounded state is not unthinkable. Nonetheless, LLM weights are fixed after training, and the context size is imposed by hardware limitations. So we need richer architecture families.

As an aside, I wish to stress the distinction between the model, which is any state-space realization that supports optimal prediction (there are generally infinitely many), and the system, which is the “real” mechanism that generates the data. The system is unknown and unknowable; the model is tangible and entirely under our control. Although as engineers we are trained to believe that models of the world converge to the “true” system as they improve, this position — known in epistemology as "naïve realism" — is scientifically indefensible.[3]

Amazon’s Stefano Soatto on how learning representations came to dominate machine learning.

To stress the dichotomy between the system and the model, in 1979, Anders Lindqvist and Giorgio Picci derived an equation that, four decades later, is at the heart of diffusion models. In a dissipative physical system, time cannot be reversed, bu it can in a model of that system, for instance a Gaussian SSM. The structure of the reverse diffusion in the model is the same as the forward diffusion, a fact that is exploited in diffusion models for image generation.[4]

Unlike deadbeat Transformers, SSMs have unbounded memory, but it fades, making them incompatible with optimal transductive inference. Again in the 1970s, the late Roger Brockett triggered a burst of interest in input-dependent state-space models, where some of the parameters are affected by the input, the simplest case being when they interact (bi-)linearly with the state. Art Krener showed that such bilinear SSMs can approximate an arbitrarily complex nonlinear (smooth) model. Alberto Isidori and coworkers extended stochastic realization theory to bilinear models, but still with an eye to making the state as small as possible.

Even 30 years later, prior to the deep-learning revolution, when we used input-dependent SSMs to generate videos of dynamic textures, we were still focused on keeping the state dimension as small as possible, encouraged by the fact that 20 states were sufficient to animate and control the rendering of waterfalls, flames, smoke, foliage, talking faces, and other stationary processes. Thanks to the reversibility of the model, we could even make smoke or steam move faster, slower, or backwards!

Deep learning twisted Occam’s razor by trying to make the embedding dimension of the training state (the weights) as large as possible, not as small as possible. Dimension is only an upper bound on “information,” and the key to induction is to limit the “information” in, not the dimension of, the trained weights.[5] Two decades later, we stacked SSMs into a neural architecture by feeding the (input-dependent) prediction residual of one layer to the next.

A breakthrough came with Mamba, which showed that efficient implementation at the hardware level is key. When Mamba is stripped down (as it is in appendix E of our recent paper on architectures to support transductive inference), it is a stack of bilinear SSMs (which Mamba’s developers call “selective state-space models”) restricted to non-interacting states (diagonal dynamics), so it can be implemented efficiently in hardware.

Diagonal SSMs are disjoint from and complementary to Transformers. Autoregressive (AR) Transformers have nilpotent dynamics, meaning that the state transition matrix becomes zero in a finite number of steps in the absence of external input. Mamba has diagonal dynamics, and nilpotent matrices cannot be diagonalized. Diagonal SSMs support infinite fading memory; AR Transformers support finite eidetic memory, and neither is general. Instead, any general (bi-)linear system can be converted to a so-called canonical form, also derived in the 1970s, which can support both eidetic and fading memory.

Meet B’MOJO

B’MOJO is a family of architectures based on canonical realizations that include Transformers, Mamba-like SSMs, and any hybrid combination of the two. There are combinatorially many options, and the name of the game is to find those that are sufficiently general to support different memory regimes yet can be efficiently mapped to specific hardware in order to scale. We plan to release basic versions of B’MOJO both for GPU hardware and for Amazon’s Trainium hardware, so they can be easily compared with existing Transformers, SSMs, and hybrid architectures.

The writing on the wall

While a representation of the “true” system is fundamentally elusive, lending credence to the writing on the wall of John Hopfield’s lab back in 1992, building model realizations is a concrete exercise grounded in data. LLMs, where the “L” refers not to natural language but to the inner language that emerges in the trained model at scale, are stochastic realizations trained inductively as optimal predictors and coopted for (suboptimal) transductive inference and generation. If the training data subtend latent logical structures, as do sensory data such as visual or acoustic data, models trained as optimal predictors are forced to capture their statistical structure.

Related content
From the urgent challenge of "machine unlearning" to overcoming the problem of critical learning periods in deep neural networks, Alessandro Achille is tackling fundamental issues on behalf of Amazon customers.

Thus, LLMs in our parlance include so-called world models trained with visual, acoustic, olfactory, tactile, and other sensory data. The model is indifferent to whether tokenized data express some abstract concept in natural language or a physical measurement process in finite precision. The resulting LLMs can represent concepts and meanings, including physical concepts such as the laws of physics, and can in principle reason, although at present they appear to be mostly building ever bigger lookup tables. Regardless, as stochastic dynamical models, LLMs can be controlled, probed with causal interventions, made observable, and studied with the tools of dynamical-systems theory.

A model is an abstraction of the underlying world — not a representation of it, because there is no objective “it” to re-present, but a realization of it, made real through the only objective entity, which is the data. Synthetic data are just as real to the model as data produced by a physical measurement process, and aligning the two is the essence of perception, for this reason often referred to as controlled hallucination.

While much of the popular discourse denigrates hallucinations[6] as something to be avoided, the ability to hallucinate is necessary for reasoning. The question is not how to avoid hallucinations but how to control them, which is the process of alignment. Architectures designed for decision and control can help, and decades of work in dynamical systems and controls may provide insights — hopefully without the need to resort to divinity, as the writing on the wall suggested.

Footnotes

[1] Note that "best" does not mean "correct." If the data is insufficient to identify the correct conclusion, even the best answer can be wrong.

[2] The simplest form of inductive learning for transductive inference is transductive fine-tuning, a form of meta-learning: past data is used to "meta-train" a model that, at inference time, is fine-tuned with a small number of examples ("few shots") to perform a new task. LLMs take this program steps further, by using sequential data with a latent logical structure (not only natural language but also video, audio, and other signals) to produce an “inner language” (we call it "Neuralese") that can then be co-opted for transductive inference.

[3] Quoting Bertrand Russell: “We all start from 'naïve realism,' i.e., the doctrine that things are what they seem. ... The observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, observing the effects of the stone upon himself. Thus science seems to be at war with itself: when it most means to be objective, it finds itself plunged into subjectivity against its will. Naïve realism leads to physics, and physics, if true, shows that naïve realism is false. Therefore naïve realism, if true, is false; therefore it is false.” Even the International Vocabulary of Metrology has dispensed with the notion of “true value” in its most recent revisions.

[4] In the paper that introduced diffusion models for image generation, the reverse-diffusion equation was attributed to a 1949 work of Feller. However, forward diffusion in the form in use today was not derived until 1960, so neither was reverse diffusion. Later references attribute the reverse-diffusion equation to a 1982 paper by B. D. O. Anderson, which, however, did not introduce it but instead described it, based on the 1979 paper of Lindqvist and Picci, correctly referenced in Anderson’s work, and extended it to more general models different from those in use in diffusion models today. The correct reference for the reverse-diffusion equation used in diffusion models is therefore Lindqvist-Picci 1979.

[5] I use quotes because defining information for the weights of a trained model entails some subtleties, but it can be done.

[6] "Hallucinations" are data generated by a model that are statistically compatible with the training set (in the sense of high likelihood under the trained model), yet "wrong", i.e., individually inconsistent with constraints that some external oracle has deemed "true" ("facts", or "axioms"). In other words, hallucinations are the product of any generative model. Outside formalized domains such as math or code, there is no objective "truth", so the oracle is replaced by an accepted knowledge base, which depends on the application. For "common sense" knowledge, the base is generally a large corpus of (more or less) verified facts, such as WikiData. Outside formalized domains, including the law, there is no guarantee that the facts or "axioms" are mutually compatible.

Research areas

Related content

GB, Cambridge
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to advance the state-of-the-art in developing efficient multimodal language models across our product portfolio. Through close hardware-software integration, we design and train models for resource efficiency across the hardware and software tech stack. The Silicon and Solutions Group Edge AI team is looking for a talented Sr. Applied Scientist who will lead our efforts on inventing evaluation methods for multimodal language models and agents for new devices, including audio and vision experiences. Key job responsibilities - Collaborate with cross-functional engineers and scientists to advance the state of the art in multimodal model evaluations for devices, including audio, images, and videos - Invent and validate reliability for novel automated evaluation methods for perception tasks, such as fine-tuned LLM-as-judge - Develop and extend our evaluation framework(s) to support expanding capabilities for multimodal language models - Analyze large offline and online datasets to understand model gaps, develop methods to interpret model failures, and collaborate with training teams to enhance model capabilities for product use cases - Work closely with scientists, compiler engineers, data collection, and product teams to advance evaluation methods - Mentor less experienced Applied Scientists A day in the life As a Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to innovative methods for evaluating new product experiences and discover ways to enhance our model capabilities and enrich our customer experiences. You'll research new methods for reliably assessing perception capabilities for audio-visual tasks in multimodal language models, design and implement new metrics, and develop our evaluation framework. You'll collaborate across teams of engineers and scientists to identify and root cause issues in models and their system integration to continuously enhance the end-to-end experience. About the team Our Edge AI science team brings together our unique skills and experiences to deliver state-of-the-art multimodal AI models that enable new experiences on Amazon devices. We work at the intersection of hardware, software, and science to build models designed for our custom silicon.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps Stay up-to-date with advancements and the latest modeling techniques in the field Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, Palo Alto
About Sponsored Products and Brands The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team SPB Ad Response Prediction team is your choice, if you want to join a highly motivated, collaborative, and fun-loving team with a strong entrepreneurial spirit and bias for action. We are seeking an experienced and motivated Applied Scientist with machine learning engineering background who loves to innovate at the intersection of customer experience, deep learning, and high-scale machine learning systems. We are looking for a talented Applied Scientist with a strong background in machine learning engineering to join our team and help us grow the business. In this role, you will partner with a team of engineers and scientists to build advanced machine learning models and infrastructure, from training to inference, including emerging LLM-based systems, that deliver highly relevant ads to shoppers across all Amazon platforms and surfaces worldwide. Key job responsibilities As an Applied Scientist, you will: * Develop scalable and effective machine learning models and optimization strategies to solve business problems. * Conduct research on new machine learning modeling to optimize all aspects of Sponsored Products business. * Enhance the scalability, automation, and efficiency of large-scale training and real-time inference systems. * Pioneer the development of LLM inference infrastructure to support next-generation GenAI workloads at Amazon Ads scale.
US, WA, Seattle
The Economics Science team in the Amazon Manager Experience (AMX) organization builds science models supporting employee career-related experiences such as their evaluation, learning and development, onboarding, and promotion. Additionally, the team conducts experiments for a wide range of employee and talent-related product features, and measures the impact of product and program initiatives in enhancing our employees' career experiences at Amazon. The team is looking for an Economist who specializes in the field of macroeconomics and time series forecasting. This role combines traditional macroeconomic analysis with modern data science techniques to enhance understanding and forecasting of workforce dynamics at scale. Key job responsibilities The economists within ALX focus on enhancing causal evaluation, measurement, and experimentation tasks to ensure various science integrations and interventions achieve their goals in building more rewarding careers for our employees. The economists develop and implement complex randomization designs that address the nuances of experimentation in complex settings where multiple populations interact. Additionally, they engage in building a range of econometric models that surface various proactive and reactive inspection signals, aiming toward better alignment in the implementation of talent processes. The economists closely collaborate with scientists from diverse backgrounds, as well as program and product leaders, to implement and assess science solutions in our products.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As a Data Scientist, you will • Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges • Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production • Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder • Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. The Applied Scientist will be in a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in Natural Language Processing (NLP) or Computer Vision (CV) related tasks. They will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. They will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Their work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve solutions powering customer experience on Alexa+. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership.
US, CA, Sunnyvale
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, CA, Mountain View
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As an Applied Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.